วันศุกร์ที่ 19 สิงหาคม พ.ศ. 2559

กระแสไฟฟ้า



วงจรไฟฟ้าอย่างง่าย โดยที่กระแสถูกแสดงด้วยอักษร i ความสัมพันธ์ระหว่างแรงดันไฟฟ้า (V), ตัวต้านทาน (R), และกระแส (I) คือ V=IR; ความสัมพันธ์นี้เป็นไปตาม กฏของโอห์ม
กระแสไฟฟ้า (อังกฤษElectric current) คือการไหลของ ประจุไฟฟ้า ในวงจรไฟฟ้า ประจุนี้มักจะถูกนำพาไป อิเล็กตรอน ที่เคลื่อนที่ในประจุยังสามารถถูกนำพาโดย ไอออน ได้เช่นกันในสาร อิเล็กโทรไลต์ หรือโดยทั้งไอออนและอิเล็กตรอนเช่นใน พลาสมา[1]
กระแสไฟฟ้ามีหน่วยวัด SI เป็น แอมแปร์ ซึ่งเป็นการไหลของประจุไฟฟ้าที่ไหลข้ามพื้นผิวหนึ่งด้วยอัตราหนึ่ง คูลอมบ์ ต่อวินาที กระแสไฟฟ้าสามารถวัดได้โดยใช้ แอมป์มิเตอร์[2]
กระแสไฟฟ้าก่อให้เกิดผลหลายอย่าง เช่นความร้อน (Joule heating) ซึ่งผลิต แสงสว่าง ในหลอดไฟ และยังก่อให้เกิด สนามแม่เหล็ก อีกด้วย ซึ่งถูกนำมาใช้อย่างแพร่หลายใน มอเตอร์, ตัวเหนี่ยวนำ, และเครื่องกำเนิดไฟฟ้า
อนุภาคที่นำพาประจุถูกเรียกว่า พาหะของประจุไฟฟ้า ใน โลหะ ตัวนำไฟฟ้า อิเล็กตรอนจากแต่ละอะตอมจะยึดเหนี่ยวอยู่กับอะตอมอย่างหลวม ๆ และพวกมันสามารถเคลื่อนที่ได้อย่างอิสระอยู่ภายในโลหะนั้นภายใต้สภาวะการณ์หนึ่ง อิเล้กตรอนเหล่านี้เรียกว่า อิเล็กตรอนนำกระแส (อังกฤษconduction electron) พวกมันเป็นพาหะของประจุในโลหะตัวนำนั้น

สัญลักษณ์

สัญลักษณ์ตามธรรมเนียมปฏิบัติสำหรับกระแสไฟฟ้าคือ  ซึ่งมีต้นกำเนิดมาจากวลีภาษาฝรั่งเศสว่า intensité de courant หมายถึงความเข้มของกระแส (อังกฤษcurrent intensity)[3][4] ความเข้มของกระแสนี้มักจะหมายถึงง่าย ๆ ว่า กระแส.[5] สัญลักษณ์  ถูกใช้โดย อ็องเดร-มารี อ็องแปร์ หลังจากที่ชื่อของเขาถูกตั้งให้เป็นหน่วยของกระแสไฟฟ้าในการจัดตั้ง กฏแรงของแอมแปร์ ที่ถูกค้นพบในปี 1820.[6] ชื่อเสียงของเขาเดินทางจากฝรั่งเศสไปยังอังกฤษจนกลายเป็นมาตรฐานที่นั่น ทั้ง ๆ ที่มีอย่างน้อยหนึ่งสิ่งพิมพ์ที่ไม่ยอมเปลี่ยนจากการใช้  ไปเป็น  จนกระทั่งปี 1896[7]

ธรรมเนียมปฏิบัติ


อิเล็กตรอนซึ่งเป็นพาหะของประจุในวงจรไฟฟ้า (เส้นสีเขียว) จะไหลในทิศทางตรงกันข้ามกับกระแสตามธรรมเนียมปฏิบัติซึ่งไหลจากขั้ว + ไปหาขั้ว - ตามเส้นสีแดง

สัญญลักษณ์ทางอิเล็กทรอนิกส์สำหรับแบตเตอรีในแผนภาพของวงจร (อังกฤษcircuit diagram)
การไหลของประจุบวกจะทำให้เกิดกระแสไฟฟ้าเหมือนกันและมีผลเช่นเดียวกันกับกระแสที่เกิดจากประจุลบที่ไหลในทิศทางตรงกันข้าม เนื่องจากกระแสไฟฟ้าอาจเกิดจากการไหลของประจุบวกหรือประจุลบ หรือทั้งสองอย่าง ความเข้าใจในทิศทางการไหลของกระแสจึงขึ้นอยู่ว่าประจุชนิดไหนที่ทำให้เกิดกระแส ทิศทางของ'กระแสตามธรรมเนียมปฏิบัติ' (อังกฤษconventional current) ถูกกำหนดให้เป็นทิศทางของการไหลของประจุบวก[8]
ในโลหะที่ใช้ทำสายไฟและตัวนำอื่น ๆ ในวงจรไฟฟ้าส่วนใหญ่ นิวเคลียสของอะตอมจะมีประจุบวกที่จะถูกจับเอาไว้ในตำแหน่งที่คงที่ และมีอิเล็กตรอนที่จะมีอิสระที่จะเคลื่อนที่ ที่สามารถนำพาประจุของพวกมันจากที่หนึ่งไปยังอีกที่หนึ่งได้ ในวัสดุอื่น ๆ เช่นสารกึ่งตัวนำ พาหะของประจุสามารถนำพาประจุบวกหรือประจุลบก็ได้ขึ้นอยู่กับสารเจือปน (อังกฤษdopant) ที่สารกึ่งตัวนำใช้ พาหะของประจุอาจนำพาทั้งประจุบวกและประจุลบในเวลาเดียวกันก็ได้ เช่นที่เกิดขึ้นใน เซลล์ไฟฟ้าเคมี
การไหลของประจุบวกสามารถให้กระแสไฟฟ้าได้เช่นเดียวกันและให้ผลในวงจรไฟฟ้าเป็นการไหลที่เหมือนกับของประจุลบแต่ในทิศทางตรงกันข้าม เนื่องจากกระแสอาจเป็นการไหลของประจุบวกหรือประจุลบอย่างใดอย่างหนึ่งหรือทั้งสองอย่าง ธรรมเนียมปฏิบัติจึงเป็นสิ่งจำเป็นสำหรับทิศทางของกระแสไฟฟ้าที่ขึ้นอยู่กับชนิดของ พาหะของประจุ ทิศทางของ"กระแสตามธรรมเนียมปฏิบัติ"ได้ถูกกำหนดตามอำเภอใจให้เป็นทิศทางเดียวกันกับการไหลของประจุบวก
ผลที่ตามมาของธรรมเนียมปฏิบัตินี้ก็คือ อิเล็กตรอนซึ่งเป็นพาหะของประจุในลวดโลหะและชิ้นส่วนอื่น ๆ ส่วนใหญ่ของวงจรไฟฟ้า จะไหลในทิศทางตรงข้ามกับ'การไหลของกระแสตามธรรมเนียมปฏิบัติ' (อังกฤษconventional current) ในวงจรไฟฟ้า

ทิศทางอ้างอิง

เนื่องจากกระแสในเส้นลวดหรือส่วนประกอบสามารถไหลไปในทิศทางใดก็ได้ เมื่อตัวแปร  ถูกกำหนดให้เป็นตัวแทนของกระแส ทิศทางที่เป็นตัวแทนของกระแสบวกจะต้องมีการระบุซึ่งมักจะเป็นลูกศรในวงจรแผนภาพ นี้เรียกว่าทิศทางอ้างอิงของกระแส  ถ้ากระแสไหลในทิศทางตรงกันข้าม ตัวแปร  จะมีค่าติดลบ
เมื่อทำการวิเคราะห์วงจรไฟฟ้า ทิศทางที่เกิดขึ้นจริงของกระแสที่ไหลผ่านองค์ประกอบของวงจรเฉพาะมักจะไม่เป็นที่รู้จัก ผลที่ตมมาก็คือ ทิศทางอ้างอิงของกระแสมักจะถูกกำหนดตามอำเภอใจ เมื่อวงจรได้รับการแก้ปัญหาแล้ว ค่าลบสำหรับตัวแปรต่าง ๆ จะหมายความว่าทิศทางที่เกิดขึ้นจริงของกระแสผ่านองค์ประกอบวงจรจะเป็นตรงกันข้ามกับทิศทางอ้างอิงที่ถูกกำหนดไว้ก่อน ในวงจรอิเล็กทรอนิกส์ ทิศทางกระแสอ้างอิงมักจะถูกกำหนดให้ทุกจุดมีกระแสไหลลงกราวด์ วิธีนี้มักจะสอดคล้องกับทิศทางชองกระแสที่เกิดขึ้นจริง เพราะในหลายวงจรแรงดันไฟฟ้าจาก แหล่งจ่ายไฟ จะเป็นบวกเมื่อเทียบกับกราวด์

กฎของโอห์ม

ในวงจรไฟฟ้าใด ๆ จะประกอบด้วยส่วนสำคัญ 3 ส่วนคือ แหล่งจ่ายพลังงานไฟฟ้าและตัวต้านทานหรืออุปกรณ์ไฟฟ้าที่จะใส่เข้าไปในวงจรไฟฟ้านั้น ๆ เพราะฉะนั้น ความสำคัญของวงจรที่จะต้องคำนึงถึงเมื่อมีการต่อวงจรไฟฟ้าใดๆก็คือทำอย่างไรจึงจะไม่ให้กระแสไฟฟ้าไหลผ่านเข้าไปในวงจรมากเกินไปซึ่งจะทำให้อุปกรณ์ไฟฟ้าชำรุดเสียหายหรือวงจรไหม้เสียหายได้ ้ นายยอร์จ ซีมอน โอห์ม นักฟิสิกส์ชาวเยอรมันได้ให้ความสำคัญของวงจรไฟฟ้าตามสมการ
เมื่อ I เป็นกระแสไฟฟ้า มีหน่วยเป็นแอมแปร์, V คือค่าความต่างศักย์มีหน่วยของโวลต์และ R คือความต้านทานของตัวนำมีหน่วยเป็นโอห์ม

DC และ AC

กระแสแบ่งออกเป็นกระแสตรง (อังกฤษDirect Current) และกระแสสลับ (อังกฤษAlternating Current)

กระแสตรง


แสดงความแตกต่างของกระแสตรงกับกระแสสลับ โดยให้แนวตั้งเป็นปริมาณกระแส แนวนอนเป็นเวลา ถ้าเป็นกระแสตรง เมื่อเวลาผ่านไป กระแสไม่เปลี่ยนทิศ แต่กระแสสลับ บางครั้งก็เป็นบวก บางครั้งก็เป็นลบ แสดงว่ากระแสมีการเปลี่ยนทิศทาง
กระแสตรง (DC) คือการไหลทิศทางเดียวของประจุไฟฟ้า กระแสตรงเกิดจากแหล่งที่มาเช่นแบตเตอรี่, เทอร์โมคัปเปิล, เซลล์แสงอาทิตย์และเครื่องกำเนิดไฟฟ้ากระแสตรงอื่นๆ กระแสตรงอาจไหลในตัวนำเช่นลวด แต่ยังสามารถไหลผ่านเซมิคอนดักเตอร์, ฉนวนหรือแม้กระทั่งผ่านสุญญากาศเช่นในลำแสงไอออน ประจุไฟฟ้าไหลในทิศทางที่คงที่แตกต่างไปจากกระแสสลับ (AC) กระแสตรงแทบไม่มีอันตราย ส่วนใหญ่ใช้ในอุปกรณ์อิเล็คโทรนิคส์ขนาดเล็ก ใช้กระแสต่ำ สามารถผลิตได้จากการนำกระแสสลับมาเปลี่ยนเป็นกระแสตรง เช่นที่ชาร์จโทรศัพท์มือถือ

กระแสสลับ

ในกระแสสลับ (AC หรือ ac), เป็นกระแสไฟฟ้าที่มีทิศทางการไหลของกระแสไฟฟ้ากลับไป-กลับมาอย่างรวดเร็ว เช่นไฟฟ้าที่ใช้ตามบ้านหรืออาคารทั่วไป รูปร่างเป็น sine wave ในบางอย่างอาจเป็นรูปสามเหลี่ยมหรือรูปสี่เหลี่ยม ส่วนใหญ่มีกระแสสูง อันตรายมาก สามารถผลิตจากไฟ DC ได้ แต่ในขนาดเล็ก เช่นเปลี่ยนจากไฟเซลล์แสงอาทิตย์มาเป็น AC เพื่อให้แสงสว่างหรือเปิดทีวีในพื้นที่ห่างไกล

แม่เหล็กไฟฟ้า


ตามกฎหมายของแอมแปร์, กระแสไฟฟ้าสามารถผลิตสนามแม่เหล็กได้ เมื่อมีกระแสไหลในเส้นลวด จะเกิดสนามแม่เหล็กที่แสดงให้เห็นเป็นรูปวงกลมรอบเส้นลวด
ตามรูป กระแสไฟฟ้าสามารถสร้างสนามแม่เหล็กได้ ในทางกลับกัน ถ้าสนามแม่เหล็กถูกรบกวน ก็สามารถสร้างกระแสไฟฟ้าบนเส้นลวดได้เช่นเดียวกัน
กระแสไฟฟ้าสามารถวัดได้โดยตรงด้วยกัลวาโนมิเตอร์ แต่จะต้องตัดวงจรแล้วแทรกมิเตอร์เข้าไปเป็นส่วนหนึ่งของวงจร ซึ่งไม่สะดวกในการปฏิบัติ ปัจจุบันสามารถวัดได้โดยไม่ต้องตัดวงจรโดยการตรวจสอบสนามแม่เหล็กที่เกิดจากกระแสไฟฟ้า อุปกรณ์ที่ใช้สำหรับการนี้รวมถึงเซ็นเซอร์แบบฮอลล์เอฟเฟค หรือใช้ที่หนีบ (current clamp) หรือใช้หม้อแปลงกระแส หรือใช้ขดลวดของ Rogowski

นิยามของกระแสไฟฟ้า

กระแสไฟฟ้าคือ ปริมาณประจุไฟฟ้าที่เลื่อนไหลในวงจรไฟฟ้าต่อหน่วยวินาที เรียกว่า ปริมาณกระแสไฟฟ้าไหล แอมแปร์ คือประจุไฟฟ้า 1 คูลอมบ์ เคลื่อนที่ผ่านพื้นที่หน้าตัดของขดลวดในเวลา 1 วินาที และหน่วยของกระแสไฟฟ้าเป็นแอมแปร์ เพื่อให้เป็นเกียรติแก่ อองเดร เอ็ม.แอมแปร์ (Andre Marie Ampere) นักฟิสิกส์ชาวฝรั่งเศส

ความสัมพันธ์ระหว่างกระแสไฟฟ้า กับประจุไฟฟ้า

สัญลักษณ์ที่ใช้แทนปริมาณกระแสไฟฟ้า (ปริมาณประจุไฟฟ้า Q ที่ไหลต่อหน่วยเวลา T) คือ I ปริมาณกระแสไฟฟ้าที่ผ่านพื้นที่ภาคตัดขวางใดๆ (เช่น ภาคตัดขวางในลวดทองแดง) นิยามจาก ปริมาณประจุไฟฟ้าที่ผ่านพื้นที่ผิวในหน่วยเวลา[9]
โดยที่เป็นปริมาณประจุที่ผ่านพื้นที่ผิวหนึ่งในช่วงเวลาในสมการข้างบนเป็นค่ากระแสไฟฟ้าเฉลี่ยถ้าเวลาเข้าใกล้ศูนย์ สามารถเขียนความสัมพันธ์อีกแบบในรูปกระแสไฟฟ้าขณะใดขณะหนึ่ง(instantaneous current)
 หรือผันกลับได้ 
หน่วยของกระแสไฟฟ้าในระบบ SI คือ แอมแปร์ (ampere, A)